Share This

Showing posts with label Quantum computing. Show all posts
Showing posts with label Quantum computing. Show all posts

Monday, May 30, 2016

World's first Quantum communication satellite to be launched in China against hackers

China is poised to become the first country to send encoded information from space that cannot be hacked. Scientists are making final adjustments to China’s first quantum communication satellite. The project chief describes it as a revolution in communications.




China will launch its first experimental quantum communication satellite in July, according to the Chinese Academy of Sciences.

China is poised to become the first country to send encoded information from space that cannot be hacked. Scientists are making final adjustments to China’s first quantum communication satellite. The project chief describes it as a revolution in communications.

A quantum photon cannot be separated or duplicated, which means if someone tried to decode information, the encryption would change, and the receiver would know that his letter was opened by someone.

Scientists hope the new technology will protect China from future cyber issues. In 2015, cases involving information technology in China rose by more than 120 percent, according to survey by a non-profit cybersecurity institution. China plans to use its quantum satellite system to cover the planet by 2030.

On the ground, China is also building its own quantum information sharing network for use in national defense and security. At some point, China plans to connect the ground network to the quantum satellite system.

It has taken five years for Chinese scientists to develop and manufacture the first quantum satellite. In June, it will be transported to the Jiuquan Satellite Launch Center in southwest China for final preparation and launch in July., 2016

China wins space race to launch world's first 'quantum communication' satellite in fight against hackers





Related posts

May 9, 2016 ... The Long March-7 rocket departed for its launch base in Hainan on ... A container carrying China's new-generation Long March-7 rocket is ...
Mar 1, 2016 ... China space station will be completed by 2020, the super "eye" to speed up space rendezvous ... The "eye" is China's newly developed third-generation rendezvous and docking CCD optical imaging sensor. It will be used on China's ... China's Space Age Grows Up As U.S. Space Race ... Jun 25, 2012 .

Wednesday, July 4, 2012

Eureka! God particle may exist!



 God particle is 'found': Scientists at Cern expected to announce on Wednesday Higgs boson particle has been discovered »

God particle is 'found': Scientists at Cern expected to announce on Wednesday Higgs boson particle has been discovered
  • Scientists 'will say they are 99.99% certain' the particle has been found
  • Leading physicists have been invited to event - sparking speculation that Higgs boson particle has been found
  • 'God Particle' gives particles that make up atoms their mass
  • Fermi Lab in Chicago also 'closing in' on proof of Higgs boson
By Rob Cooper

Read more: http://www.dailymail.co.uk/sciencetech/article-2167188/God-particle-Scientists-Cern-expected-announce-Higgs-boson-particle-discovered-Wednesday.html#ixzz1ze6ukgpN

Eureka! Cern announces discovery of Higgs boson 'God particle' »
It was a breakthrough that took almost half a century of deep thought, more than 30 years of painstaking experimentation and a massive £2.6bn machine. Yesterday, scientists said they believed they had...

Physicists celebrate evidence of particle 



To cheers and standing ovations, scientists at the world's biggest atom smasher have claimed the discovery of a new subatomic particle.

They say it's "consistent" with the long-sought Higgs boson that helps explain what gives all matter in the universe size and shape.

"We have now found the missing cornerstone of particle physics," Rolf Heuer, director of the European Centre for Nuclear Research (CERN), told scientists.

He said the newly discovered subatomic particle is a boson, but he stopped just shy of claiming outright that it is the Higgs boson itself - an extremely fine distinction.

"As a layman, I think we did it," he told the elated crowd.

"We have a discovery. We have observed a new particle that is consistent with a Higgs boson."

The Higgs boson, which until now has been a theoretical particle, is seen as the key to understanding why matter has mass, which combines with gravity to give an object weight.

The idea is much like gravity and Isaac Newton's discovery of it - gravity was there all the time before Newton explained it.

But now scientists have seen something very much like the Higgs boson and can put that knowledge to further use.

CERN's atom smasher, the $A10 billion Large Hadron Collider on the Swiss-French border, has been creating high-energy collisions of protons to investigate dark matter, antimatter and the creation of the universe, which many theorise occurred in a massive explosion known as the Big Bang.

Two independent teams at CERN said on Wednesday they had both "observed" a new subatomic particle - a boson.

Heuer called it "most probably a Higgs boson but we have to find out what kind of Higgs boson it is".

Asked whether the find is a discovery, Heuer answered, "As a layman, I think we have it. But as a scientist, I have to say, '"What do we have?'"

The leaders of the two CERN teams - Joe Incandela, head of CMS with 2100 scientists, and Fabiola Gianotti, head of ATLAS with 3000 scientists - each presented in complicated scientific terms what was essentially extremely strong evidence of a new particle.

Incandela said it was too soon to say definitively whether it is the "standard model" Higgs that Scottish physicist Peter Higgs and others predicted in the 1960s - part of a standard model theory of physics involving an energy field where particles interact with a key particle, the Higgs boson.

"The" Higgs or "a" Higgs - that was the question on Wednesday.

"It is consistent with a Higgs boson as is needed for the standard model," Heuer said.

"We can only call it a Higgs boson - not the Higgs boson."

Higgs, who was invited to be in the audience, said he also could not yet say if it was part of the standard model.

But he told the audience the discovery appears to be very close to what he predicted.

"It is an incredible thing that it has happened in my lifetime," he said, calling it a huge achievement for the proton-smashing collider built in a 27-kilometre underground tunnel.

The stunning work elicited standing ovations and frequent applause at a packed auditorium in CERN as Gianotti and Incandela each took their turn.

Incandela called it "a Higgs-like particle" and said "we know it must be a boson and it's the heaviest boson ever found".

© 2012 AP

Video preludes Higgs boson announcement
http://newscri.be/link/1779202 - PHYS.ORG.COM

Sunday, June 17, 2012

Quantum Computing? Quantum Bar Magnets in a Transparent Salt

ScienceDaily (June 15, 2012) — Scientists have managed to switch on and off the magnetism of a new material using quantum mechanics, making the material a test bed for future quantum devices.
This image shows the antiferromagnetic arrangement of the spins (colored arrows) in the magnetic salt used by the Swiss-German-US-London team. (Credit: University College London)
The international team of researchers led from the Laboratory for Quantum Magnetism (LQM) in Switzerland and the London Centre for Nanotechnology (LCN), found that the material, a transparent salt, did not suffer from the usual complications of other real magnets, and exploited the fact that its quantum spins -- which are like tiny atomic magnets -- interact according to the rules of large bar magnets. The study is published in Science.

Anybody who has played with toy bar magnets at school will remember that opposite poles attract, lining up parallel to each other when they are placed end to end, and anti-parallel when placed adjacent to each other. As conventional bar magnets are simply too large to reveal any quantum mechanical nature, and most materials are too complex for the spins to interact like true bar magnets, the transparent salt is the perfect material to see what's going on at the quantum level for a dense collection of tiny bar magnets.

The team were able to image all the spins in the special salt, finding that the spins are parallel within pairs of layers, while for adjacent layer pairs, they are antiparallel, as large bar magnets placed adjacent to each other would be. The spin arrangement is called "antiferromagnetic." In contrast, for ferromagnets such as iron, all spins are parallel.

By warming the material to only 0.4 degrees Celsius above the absolute "zero" of temperature where all classical (non-quantum) motion ceases, the team found that the spins lose their order and point in random directions, as iron does when it loses its ferromagnetism when heated to 870 Celsius, much higher than room temperature because of the strong and complex interactions between electron spins in this very common solid.

The team also found that they could achieve the same loss of order by turning on quantum mechanics with an electromagnet containing the salt. Thus, physicists now have a new toy, a collection of tiny bar magnets, which naturally assume an antiferromagnetic configuration and for which they can dial in quantum mechanics at will.

"Understanding and manipulating magnetic properties of more traditional materials such as iron have of course long been key to many familiar technologies, from electric motors to hard drives in digital computers," said Professor Gabriel Aeppli, UCL Director of the LCN.

"While this may seem esoteric, there are deep connections between what has been achieved here and new types of computers, which also rely on the ability to tune quantum mechanics to solve hard problems, like pattern recognition in images."

Monday, March 19, 2012

'Quantum criticality': Ultracold experiments heat up quantum research

Ultracold experiments heat up quantum research
Enlarge

This false color image shows the average density of cesium atoms taken during multiple experimental cycles for studying quantum criticality in the ultracold laboratory of Cheng Chin, associate professor in physics at UChicago. The density is lowest in the white area on the outside, highest toward the center, where higher numbers of atoms are blocking the incoming infrared laser light. Xibo Zhang collected these data in connection with his recently completed doctoral research at UChicago. (Xibo Zhang and Cheng Chin)

(PhysOrg.com) -- University of Chicago physicists have experimentally demonstrated for the first time that atoms chilled to temperatures near absolute zero may behave like seemingly unrelated natural systems of vastly different scales, offering potential insights into links between the atomic realm and deep questions of cosmology.

This ultracold state, called “ criticality,” hints at similarities between such diverse phenomena as the gravitational dynamics of black holes or the exotic conditions that prevailed at the birth of the universe, said Cheng Chin, associate professor in physics at UChicago. The results could even point to ways of simulating cosmological phenomena of the early universe by studying systems of in states of .

“Quantum criticality is the entry point for us to make connections between our observations and other systems in nature,” said Chin, whose team is the first to observe quantum criticality in ultracold atoms in optical lattices, a regular array of cells formed by multiple laser beams that capture and localize individual atoms.

UChicago graduate student Xibo Zhang and two co-authors published their observations online Feb. 16 in Science Express and in the March 2 issue of Science.

Quantum criticality emerges only in the vicinity of a quantum phase transition. In the physics of everyday life, rather mundane phase transitions occur when, for example, water freezes into ice in response to a drop in . The far more elusive and exotic quantum phase transitions occur only at ultracold temperatures under the influence of magnetism, pressure or other factors.

“This is a very important step in having a complete test of the theory of quantum criticality in a system that you can characterize and measure extremely well,” said Harvard University physics professor Subir Sachdev about the UChicago study.

have extensively investigated quantum criticality in crystals, superconductors and magnetic materials, especially as it pertains to the motions of electrons. “Those efforts are impeded by the fact that we can’t go in and really look at what every electron is doing and all the various properties at will,” Sachdev said.

Sachdev’s theoretical work has revealed a deep mathematical connection between how subatomic particles behave near a quantum critical point and the gravitational dynamics of black holes. A few years hence, offshoots of the Chicago experiments could provide a testing ground for such ideas, he said.

There are two types of critical points, which separate one phase from another. The Chicago paper deals with the simpler of the two types, an important milestone to tackling the more complex version, Sachdev said. “I imagine that’s going to happen in the next year or two and that’s what we’re all looking forward to now,” he said.

Other teams at UChicago and elsewhere have observed quantum criticality under completely different experimental conditions. In 2010, for example, a team led by Thomas Rosenbaum, the John T. Wilson Distinguished Service Professor in Physics at UChicago, observed quantum criticality in a sample of pure chromium when it was subjected to ultrahigh pressures.

Zhang, who will receive his doctorate this month, invested nearly two and a half years of work in the latest findings from Chin’s laboratory. Co-authoring the study with Zhang and Chin were Chen-Lung Hung, PhD’11, now a postdoctoral scientist at the California Institute of Technology, and UChicago postdoctoral scientist Shih-Kuang Tung.

In their tabletop experiments, the Chicago scientists use sets of crossed laser beams to trap and cool up to 20,000 cesium atoms in a horizontal plane contained within an eight-inch cylindrical vacuum chamber. The process transforms the atoms from a hot gas to a superfluid, an exotic form of matter that exists only at temperatures hundreds of degrees below zero.

“The whole experiment takes six to seven seconds and we can repeat the experiment again and again,” Zhang said.
The experimental apparatus includes a CCD camera sensitive enough to image the distribution of atoms in a state of quantum criticality. The CCD camera records the intensity of laser light as it enters that vacuum chamber containing thousands of specially configured ultracold atoms.

“What we record on the camera is essentially a shadow cast by the atoms,” Chin explained.

The UChicago scientists first looked for signs of quantum criticality in experiments performed at ultracold temperatures from 30 to 12 nano-Kelvin, but failed to see convincing evidence. Last year they were able to push the temperatures down to 5.8 nano-Kelvin, just billionths of a degree above (minus 459 degrees Fahrenehit). “It turns out that you need to go below 10 nano-Kelvin in order to see this phenomenon in our system,” Chin said.

Chin’s team has been especially interested in the possibility of using ultracold atoms to simulate the evolution of the early universe. This ambition stems from the quantum simulation concept that Nobel laureate Richard Feynman proposed in 1981. Feynman maintained that if scientists understand one quantum system well enough, they might be able to use it to simulate the operations of another system that can be difficult to study directly.

For some, like Harvard’s Sachdev, quantum criticality in ultracold atoms is worthy of study as a physical system in its own right. “I want to understand it for its own beautiful quantum properties rather than viewing it as a simulation of something else,” he said.

More information: “Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices,” by Xibo Zhang, Chen-Lung Hung, Shih-Kuang Tung, and Chen Chin, Science, March 2, 2012, Vol. 335, No. 6072, pp. 1070-1072, and online Feb. in Science Express Feb. 16.

Provided by University of Chicago (news : web)

Newscribe : get free news in real time 

Related posts:
IBM takes giant step to faster, quantum computers
A quantum connection between light and motion
Quantum strategy offers game-winning advantages ...
IBM Scalable Quantum Computing
Quantum Computing Thrives on Chaos
Engineering the Computer of the Future, One Atom at a ...
 

Wednesday, March 14, 2012

Quantum strategy offers game-winning advantages, even without entanglement

Quantum strategy offers game-winning advantages, even without entanglementfeature
By Lisa Zyga PhysOrg.com

Enlarge

Experimental and theoretical results both show that quantum gain - measured as the difference between the winning chances for classical and quantum players - is highest under maximum entanglement. Quantum gain remains even when entanglement disappears, and approaches zero along with the discord. Image credit: Zu, et al. ©2012 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

(PhysOrg.com) -- Quantum correlations have well-known advantages in areas such as communication, computing, and cryptography, and recently physicists have discovered that they may help players competing in zero-sum games, as well. In a new study, researchers have found that a game player who uses an appropriate quantum strategy can greatly increase their chances of winning compared with using a classical strategy.

The researchers, Chong Zu from Tsingua University in Beijing, China, and coauthors, have published their study on how mechanics can help in a recent issue of the .

In their study, the researchers focused on a two-player game called matching pennies. In the classical version of this game, each player puts down one penny as either heads or tails. If both pennies match, then Player 1 wins and takes both pennies. If one penny shows heads and the other shows tails, then Player 2 wins and takes both pennies. Since one player’s gain is always the other player’s loss, the game is a zero-sum game.

In the classical version of the game, neither player has any incentive to choose one side of the coin over the other, so players choose heads or tails with equal probability. The random nature of the players’ strategies results in a “mixed strategy Nash equilibrium,” a situation in which each player has only a 50% chance of winning, no matter what strategy they use.

But here, Zu and coauthors have found that a player who has the option of using a quantum strategy can increase his or her chances of winning from 50% to 94%. This quantum version of the game uses entangled photons as qubits instead of pennies. And instead of choosing between heads and tails, players use a polarizer and single-photon detector to implement their strategies. While the classical player can still choose only one of two states, the quantum player has more choices due to her ability to rotate a polarizer 360° before the single-photon detector. The researchers calculated that the quantum player can maximize his or her chances of winning by rotating the polarizer at a 45° angle.

“Each player can apply any operation to their qubit (or coin), and then measure it in computational basis,” Zu explained to PhysOrg.com. “For a classical player, the operation he can do is to flip the bit or just leave it unchanged. However, if a player has quantum power, he can apply arbitrary single-bit operations to his qubit. But the measurement part is the same for the quantum and classical players.”

The researchers found that the quantum advantage depends heavily on how correlated the original photons are, with a maximally entangled state providing the largest gain. The researchers were surprised to find that the quantum advantage doesn’t decrease to zero when entanglement disappears completely, since a different kind of quantum correlationquantum discord – also provides an advantage. This finding may even be the most interesting part of the study.

“There is no wonder that quantum mechanics will lead to advantages in game theory, but the interesting part of our work is that we find out the quantum gain does not decrease to zero when entanglement disappears,” Zu said. “Instead, it links with another kind of quantum correlation described by discord for the qubit case, and the connection is demonstrated both theoretically and experimentally.”

He added that this finding could potentially be useful for making real-world strategies.

“Our work may help people to understand how works in game theory (in some cases, entanglement is not necessary for a quantum player to achieve a positive gain),” he said. “It may also give a good example of people making strategies in a future quantum network.”

More information: C. Zu, et al. “Experimental demonstration of quantum gain in a zero-sum game.” New Journal of Physics, 14 (2012) 033002. DOI: 10.1088/1367-2630/14/3/033002

Related posts:

IBM Scalable Quantum Computing
Can The Human Brain See Quantum Images?
A quantum connection between light and motion
Quantum Computing Thrives on Chaos
The Quantum Physics Behind The Death Of Osama Bin ... 

 Newscribe : get free news in real time